機械学習 チュートリアル
サポートベクターマシン

SVMの仕組みや正規化・ハイパーパラメータの調整方法など実践を学ぼう

初心者〜中級者対象
受講人数 131名 | 学習期間目安 1日 〜 5日
★★★★☆  3.5 (2件)

icon-check 対象:初心者〜中級者 icon-check 環境:オンライン / ローカル
icon-check 受講期限:無制限 icon-check 受講料金:500円

コース概要

  • ブラウザとインターネットで実行可能(Google Colab利用)
  • Jupyter Notebookを利用したプログラミング演習
  • サポートベクターマシン(SVM)の概要
  • SVMの基本的な仕組みとハイパーパラメータの理解
  • アイリスデータセットで初歩的な実装演習
  • Kaggleのコンペデータセットを使った実装演習
  • 特徴量の正規化
  • ハイパーパラメータチューニング
  • 予測の評価(混同行列と正解率)

学べる内容

本チュートリアルではサポートベクターマシン(英:Support Vector Machine)を機械学習初心者向けに解説したチュートリアルとなります。SVMの基本的な概念や理解すべき仕組み(マージン・ハイパープレイン・サポートベクター)を簡単な例を使いながら紐解いていきましょう。

また、実際のデータを使用した2つのコーディング実習も含まれています。前半は機械学習初心者向けのデータセット「Iris(アヤメの分類)」を使ってシンプルなSVMの実装を行います。SVMでは必須となる「特徴量の正規化(Normalization)」や、モデルの初歩的な評価方法(混同行列・正解率)を学びます。

後半のコーディング実習では、世界最大級の機械学習エンジニアコミュニティ「Kaggle」で公開されているデータセットを使い、実践的なSVMのモデル構築を行います。より実践的なテクニックとして、GridSearchCVを使ったハイパーパラメータチューニングの実装を行います。

初めて機械学習の手法を学ぶ方へ

本コースでは機械学習の前提知識が無くても受講は可能です。ただし、機械学習の概要や基礎知識があればより深い理解が得られます。初めて機械学習の手法を学ぶ方は下記の講座を先に受講されることをお勧めします。

チュートリアルに含まれない内容

機械学習の初学者向けのチュートリアルとなっており、本講座ではサポートベクターマシンの数学的な解説は含まれませんのでご了承ください。またSVMのモデル構築は機械学習ライブラリ「Scikit-learn」を利用します。SVMのアルゴリズムの構築は含まれません。

サポートベクターマシン(SVM)とは?

Support Vector Machineを略してSVM(エス・ブイ・エム)と一般的に呼ばれています。日本語ではサポートベクターマシンまたはサポートベクトルマシンとも呼ばれます。「教師あり学習」に属する機械学習の手法で、「分類」に対して非常に優れており、多くの企業や組織で利用されています。

分類を行うSVMを特別に「サポート・ベクター・クラシファイヤー(Support Vector Classifier)」と呼ばれています。対して回帰を行うSVMは「サポート・ベクター・レグレッション(Support Vector Regression)」と呼びます。本チュートリアルでは分類を扱う「Support Vector Classifier」のみとなります。

特徴

ブラウザーとインターネットで実行が可能

Google Colab(グーグル・コラボ)を利用することにより、特別な環境構築やインストールなどの作業を行うことなく、ブラウザのみで実行が可能です。チュートリアルでは、Google Colabの基本的な使い方、また自身のPCに環境構築を行う方法の詳細を説明しています。

実践に役立つ知識

  • SVMのハイパーパラメータの理解
  • 特徴量の正規化の理解と実装
  • モデル評価方法(混同行列 / 正解率)
  • GridSearchCVを使ったハイパーパラメータチューニング
  • Kaggleデータの利用および投稿

本チュートリアルではKaggleの無料会員登録が必要です。(参考:Kaggleとは?

受講資格

icon-check (必須)Pythonの基礎知識

icon-check (推薦)線形代数及び統計の初歩的な知識

icon-check (推薦)Numpy、Pandas、Matplotlibの初歩的な知識

原則として、Pythonの初歩的な知識がある前提となっています。「推薦」は必須ではありませんが、初歩的な知識があると、よりスムーズに受講が可能です。下記の「機械学習 準備編」の無料コースをご参照下さい。

コース詳細

機械学習 チュートリアル サポートベクターマシン
  Chapter 1 環境構築
 icon-cog 【Windows編】Minicondaを利用した環境構築 約2,200文字
 icon-cog 【Mac】Minicondaを利用した環境構築 約1,900文字
 icon-cog Google Colabを利用した環境構築 約2,100文字
  Chapter 2 SVMの概要
 icon-pencil SVMとは? 約500文字
 icon-pencil SVMの仕組み 約1,200文字
 icon-pencil SVMのハイパーパラメータ 約4,000文字
  Chapter 3 SVMの実装(基本編)
 icon-pencil データセットについて 約500文字
 icon-code 必要なライブラリのインポート 10行
 icon-code データの読み込み 10行
 icon-code 正規化 7行
 icon-code モデル訓練 4行
 icon-code モデル評価 6行
  Chapter 4 SVMの実装(kaggle編)
 icon-pencil データセットについて 約1,000文字
 icon-code ライブラリのインポート 10行
 icon-code データの読み込み 6行
 icon-code 散布図行列でデータ確認 2行
 icon-code データの前処理 13行
 icon-code モデル訓練 2行
 icon-code モデルを使って予測(訓練データ) 3行
 icon-code テストデータで予測してKaggleへ投稿 6行
 icon-code GridSearchCVでハイパーパラメーターチューニング 18行
 icon-code 最適化したSVMモデルの予測評価 3行

レビュー

icon-user コデクサさんの新コース、待ってました!サポートベクターマシンですが、機械学習入門書籍だと専門用語と数式が多くて理解がうまく出来ず、無料の記事だと浅すぎてよく判らずじまいでしたが…こちらのコースはその中間とも言うべきでした!数式での説明がない分、初心者の私でも理解が出来ました。さらにハイパーパラメータの説明は事例を使って詳細に解説してあり、とても解りやすかったです。オススメです。

icon-check-circle-o 講師からの返答
フィードバックありがとうございます!お役に立てて大変光栄です!引き続き他のコースの制作も進めておりますので 、宜しくお願い致します!

icon-user Python歴半年程度で機械学習を勉強しています。線形代数や統計の基礎が学べて本当に役に立っています。初めて有料コースに挑戦しました。いくつか躓いた箇所もありましたが、サポートベクターマシンがよく理解できたと思います。他の実践チュートリアルも挑戦してみます。

icon-check-circle-o 講師からの返答
フィードバックありがとうございます!お役に立てて大変光栄です!引き続き他のコースの制作も進めておりますので 、宜しくお願い致します!

講師紹介

codexa ロゴ

本コース「Pandas 入門」はcodexa(コデクサ)の機械学習エンジニアチームにて監修・作成を行いました。機械学習チームの最大の特徴は様々なレベルの機械学習エンジニアが共同でコースの作成を行っています。人工知能先進国のアメリカで機械学習エンジニアとして活躍してきたエンジニアもいれば、日本でPHPを中心としてWebアプリケーション開発から一から機械学習を学んだエンジニアも所属しています。機械学習上級者が一方的に教えるコンテンツよりも、機械学習初心者が主体となり、初心者「が」理解しやすく、学習が継続的に行えるようなコースを提供することを目的としています。「初心者の、初心者による、初心者のための機械学習」をモットーにチーム一丸となってコンテンツを制作しています。

このコースを取っている方は次のコースも取っています